Victorian Polymath

My latest for the Literary Review


In 1859, John Tyndall wrote “the atmosphere admits of the entrance of the solar heat; but checks its exit, and the result is a tendency to accumulate heat at the surface of the planet.”  He was just beginning a thorough scientific study of the way infrared radiation is absorbed by different gases, including water vapour and carbon dioxide, which would be developed by others into an understanding of the human impact on global warming.  Tyndall always had a good way with words, summing up some of his research with:

The sun’s invisible rays far transcend the visible ones in heating power, so that if the alleged performances of Archimedes during the siege of Syracuse had any foundation in fact, the dark solar rays would have been the philosopher’s chief agents of combustion.

He was also the first person to explain correctly why the sky is blue, was an outspoken critic of the Victorian obsession with the supernatural, a popular lecturer, and author of books presenting science to a wide audience.  He has long been one of my scientific heroes, and for even longer he has been in need of a good biography.  The Ascent of John Tyndall is not quite as good as I had hoped it might be, but my expectations were perhaps unreasonably high, and Roland Jackson has done a thorough job, even if his prose lacks sparkle.

Tyndall’s ascent took him from modest beginnings in Ireland, where he was born in the early 1820s (the exact date is not known because the relevant records were destroyed during the Irish Civil War of 1922) to succeed Michal Farady (himself the successor to Humphry Davy) at the head of the Royal Institution in London.  Davy, Faraday and Tyndall were the men who made the RI a success, and made science fashionable in nineteenth century England.  The ascent was, however, far from straightforward.  It took Tyndall from surveying work with the Ordnance Survey (linked with the railway boom of the mid-1800s) to schoolmastering at a college where although hired to teach surveying to prospective farmers, he was also told to teach chemistry, and kept one step ahead of his students with the aid of a textbook.  His interest in science was fired, and in 1848 he went to Germany to work for a PhD – at that time, there was no requirement to take an undergraduate degree first.  Back in England, Tyndall built up a reputation through his work on magnetism, gave some well-received lectures, and was appointed as a lecturer at the RI.

In the mid-1950s, through an interest in the way rocks are fractured, he found a life-long passion – mountaineering.  What started as field trips to the Alps to investigate geology and glaciology became climbing for the sake of climbing.  In many ways, Tyndall was a pioneer, circumventing rules that any attempt on Mont Blanc had to be accompanied by four guides by claiming that as he was on a scientific field trip he only needed one guide.  But in other ways he was in the tradition of Victorian gentlemen mountaineers.  On that climb, porters carried supplies up to the base hut before the ascent – supplies that included one bottle of cognac, three of Beaujolais, three of vin ordinaire, three large loaves, three halves of roasted leg of mutton, three cooked chickens, raisins and chocolate.  Well, there were a couple of other people in the party!

Such entertaining detail is, unfortunately, thin on the ground in Jackson’s account, which sometimes falls back on lists of the dinners attended and people met, culled from diaries.  Nevertheless, we glean that Tyndall was something of a ladies’ man, and when he eventually married (in 1875) a friend commented that this would “clip his wings”.  An anecdote which struck a more personal chord with me concerned Tyndall’s relationship with publishers.  His book Glaciers of the Alps was published by Murray, but he then switched to Longman for his subsequent works.  When asked why, he explained that Murray had taken a cut of income from an American edition produced by another publisher, while Longman offered two-thirds of profits from the UK and did not claim control of overseas rights.  Some modern publishing houses could learn from that example.

The USA became increasingly important to Tyndall as his fame, and his books, spread.  In the early 1870s he undertook a lecture tour of America which can best be described as the scientific equivalent of Charles Dickens’ triumphal progress through the States.  Six lectures in New York were printed up as pamphlets and 300,000 copies were sold across the USA at 3 cents each.  Overall, after the deduction of expenses the tour produced a profit of $13,033.34, which was donated by Tyndall to be invested and found a fund to provide scholarships for American students to carry out research in Europe.  Many Americans benefited from the scheme, which only ran out of money in the 1960s.

Tyndall was involved in many official works, including serving on the Lighthouse Committee (a post which he essentially inherited from Faraday) and was not afraid to speak out on matters of public interest.  He carried out key work which helped to establish the idea that disease is spread by germs, challenging opponents of the idea through papers published in the medical journals and in letters to the Times.  Above all, Tyndall was a rationalist, who believed in the scientific method and poh-poohed spritualism.  He wrote “A miracle is strictly defined as an invasion of the law of the conservation of energy  .  .  .  Hence the scepticism of scientific men when called upon to join in national prayer for changes in the economy of nature.”  This should be read against the background of a sermon by the Dean of York in which he preached that a cattle plague then afflicting the herds was God’s work, and that only God could avert it.  As with Tyndall’s work on what we now call the greenhouse effect, his ideas have resonance today – ironically, particular resonance in the United States which espoused Tyndall himself so enthusiastically.

In a later article, Tyndall put humankind in a cosmic perspective, imagining:

Transferring our thoughts from this little sand-grain of an earth to the immeasurable heavens where countless worlds with freights of life probably revolve unseen.

Tyndall died in 1893.  His wife was still only in her late forties, and lived for a further 47 years.  Unfortunately, although she gathered together a wealth of material about her husband, she could never bring herself to write a biography, and inadvertently prevented anyone else doing so until a less than comprehensive account appeared in 1945.  Jackson’s account is certainly comprehensive, and to be recommended to anyone interested in nineteenth century science and society, not just to the minority who have heard the name John Tyndall already (except, perhaps, in connection with a namesake with very different political convictions to “our” John Tyndall).  It isn’t the kind of book you will read at a sitting, but with thematic chapters dealing with topics such as glacial studies or rationalism, it is easy to select what takes your fancy while skipping anything that doesn’t.  And it is certainly the best biography of Tyndall.